Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Vet Med Sci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556322

RESUMO

A 7-year-and-8-month-old, male degu (Octodon degus) with anorexia, depression, and labored breathing was found to have a thoracic effusion and enlargement of the right testis on radiographic examination. Despite treatment, the animal died. At necropsy, hepatomegaly, splenomegaly, and multifocal nodules on the intestinal serosa and mesentery were observed. Histologically, the foci were densely cellular invasive neoplasms composed of sheets of round to polygonal cells, with occasional multinucleated giant cells. Immunohistochemically, the neoplastic cells were immunopositive for ionized calcium-binding adapter molecule 1, human leukocyte antigen-DR, and CD204. These findings were consistent with disseminated histiocytic sarcoma.

2.
Front Neurosci ; 18: 1365737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456144

RESUMO

Maturation of the forebrain involves transitions from higher to lower levels of synaptic plasticity. The timecourse of these changes likely differs between regions, with the stabilization of some networks scaffolding the development of others. To gain better insight into neuroplasticity changes associated with maturation to adulthood, we examined the distribution of two molecular markers for developmental plasticity. We conducted the examination on male and female degus (Octodon degus), a rodent species with a relatively long developmental timecourse that offers a promising model for studying both development and age-related neuropathology. Immunofluorescent staining was used to measure perineuronal nets (PNNs), an extracellular matrix structure that emerges during the closure of critical plasticity periods, as well as microglia, resident immune cells that play a crucial role in synapse remodeling during development. PNNs (putatively restricting plasticity) were found to be higher in non-juvenile (>3 month) degus, while levels of microglia (putatively mediating plasticity) decreased across ages more gradually, and with varying timecourses between regions. Degus also showed notable variation in PNN levels between cortical layers and hippocampal subdivisions that have not been previously reported in other species. These results offer a glimpse into neuroplasticity changes occurring during degu maturation and highlight adolescence as a unique phase of neuroplasticity, in which PNNs have been established but microglia remain relatively high.

3.
J Fungi (Basel) ; 9(11)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37998927

RESUMO

BACKGROUND: Trichophyton benhamiae, an anthropophilic dermatophyte, can cause dermatophytosis in humans and animals with rising zoonotic infections through pets, primarily in Europe. Dermatophytosis from T. benhamiae is often misdiagnosed due to its inflammatory symptoms. We report a case of tinea corporis from T. benhamiae var. luteum in a Japanese woman, contracted from pet Czech degus. CASE: The 40-year-old patient developed neck papules resembling acne. Initial treatment with topical antibiotics and steroids exacerbated the rash. Fungal elements were not detected by direct potassium hydroxide examination. Skin biopsy confirmed fungal elements in the stratum corneum and hair follicles, and tinea corporis was diagnosed. Oral terbinafine 125 mg was initiated without topical agents. Erythematous papules appeared on her limbs, determined as a trichophytid reaction. After two months, her skin improved significantly. Fungal culture identified T. benhamiae var. luteum colonies with a yellowish hue. Mating tests classified the strain as Americano-European race (-) with MAT1-1 genotype. This was diagnosed as tinea corporis from T. benhamiae var. luteum, likely transmitted from pet Czech degus. CONCLUSIONS: The incidence rate of pet-transmitted cutaneous fungal infections may increase in Japan with the trend to keep exotic pets. Dermatologists must recognize dermatophytosis clinical features from anthropophilic dermatophytes to prevent misdiagnosis and understand evolving nomenclature and pathogenesis.

4.
Front Behav Neurosci ; 17: 1239157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928446

RESUMO

Social interaction can improve animal performance through the prevention of stress-related events, the provision of security, and the enhancement of reproductive output and survival. We investigated the effects of prolonged chronic social isolation stress on behavioral, cognitive, and physiological performance in the social, long-lived rodent Octodon degus. Degu pups were separated into two social stress treatments: control (CTRL) and chronically isolated (CI) individuals from post-natal and post-weaning until adulthood. We quantified anxiety-like behavior and cognitive performance with a battery of behavioral tests. Additionally, we measured their basal metabolic rate (BMR) and analyzed the multifractal properties of the oxygen consumption time series using Multifractal Detrended Fluctuation Analysis, a well-known method for assessing the fractal characteristics of biological signals. Our results showed that CI induced a significant increase in anxiety-like behaviors and led to a reduction in social and working memory in male degus. In addition, CI-treated degus reduced the multifractal complexity of BMR compared to CTRL, which implies a decrease in the ability to respond to environmental stressors and, as a result, an unhealthy state. In contrast, we did not observe significant effects of social stress on BMR. Multivariate analyses showed a clear separation of behavior and physiological variables into two clusters, corresponding to CI and CTRL degus. This study provides novel insights into the effects of prolonged chronic social isolation stress on behavior, cognitive performance, and metabolic complexity in this rodent animal model. To the best of our knowledge, it is the first study to integrate cognitive-behavioral performance and multifractal dynamics of a physiological signal in response to prolonged social isolation. These findings highlight the importance of social interactions for the well-being and overall performance of social animals.

5.
Front Aging Neurosci ; 15: 1250342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810621

RESUMO

Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-ß (Aß) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aß increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aß proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.

6.
Front Behav Neurosci ; 17: 1221090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600762

RESUMO

Introduction: Prolonged social isolation is a form of passive chronic stress that has consequences on human and animal behavior. The present study was undertaken to elucidate whether the long-term isolation would precipitate age-related changes in anxiety and spatial learning and memory in degus. Methods: We investigated the effects of long-term social isolation on anxiety levels in the light-dark test, and spatial orientation abilities in the Barnes maze. Middle-aged female Octodon degus were allocated to either group-housed (3 animals per cage) or individually-housed for 5 months. Results: Under this experimental condition, there were no significant group differences in the anxiety level tested in the light-dark test and in the motivation to escape from the Barnes maze. There were no significant differences in cortisol levels between individually- and group-housed animals. On the last acquisition training day of spatial learning, individually- housed animals had a significantly higher number of correct responses and a smaller number of reference and working memory errors than the group-housed animals. In addition, isolated animals showed a tendency for reference and working memory impairment on the retention trial, while group-housed degus showed improvement in these parameters. Discussion and conclusion: The present study indicates that prolonged social isolation during adulthood in female degus has a dual effect on spatial orientation. Specifically, it results in a significant improvement in acquisition skills but a slight impairment in memory retention. The obtained cognitive changes were not accompanied by modification in anxiety and cortisol levels.

7.
Biology (Basel) ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37237559

RESUMO

Cardiovascular diseases represent the leading cause of mortality and morbidity worldwide, and age is an important risk factor. Preclinical models provide supportive evidence toward age-related cardiac changes, as well as allow for the study of pathological aspects of the disease. In the present work, we evaluated the electrocardiogram (ECG) recording in the O. degus during the aging process in both females and males. Taking into account the age and sex, our study provides the normal ranges for the heart rate, duration and voltage of the ECG waves and intervals, as well as electrical axis deviation. We found that the QRS complex duration and QTc significantly increased with age, whereas the heart rate significantly decreased. On the other hand, the P wave, PR and QTc segments durations, S wave voltage and electrical axis were found to be significantly different between males and females. The heart rhythm was also altered in aged animals, resulting in an increased incidence of arrhythmias, especially in males. Based on these results, we suggest that this rodent model could be useful for cardiovascular research, including impacts of aging and biological sex.

8.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674622

RESUMO

In Octodon degus, the aging process is not equivalent between sexes and worsens for females. To determine the beginning of detrimental features in females and the ways in which to improve them, we compared adult females (36 months old) and aged females (72 months old) treated with Andrographolide (ANDRO), the primary ingredient in Andrographis paniculata. Our behavioral data demonstrated that age does not affect recognition memory and preference for novel experiences, but ANDRO increases these at both ages. Sociability was also not affected by age; however, social recognition and long-term memory were lower in the aged females than adults but were restored with ANDRO. The synaptic physiology data from brain slices showed that adults have more basal synaptic efficiency than aged degus; however, ANDRO reduced basal activity in adults, while it increased long-term potentiation (LTP). Instead, ANDRO increased the basal synaptic activity and LTP in aged females. Age-dependent changes were also observed in synaptic proteins, where aged females have higher synaptotagmin (SYT) and lower postsynaptic density protein-95 (PSD95) levels than adults. ANDRO increased the N-methyl D-aspartate receptor subtype 2B (NR2B) at both ages and the PSD95 and Homer1 only in the aged. Thus, females exposed to long-term ANDRO administration show improved complex behaviors related to age-detrimental effects, modulating mechanisms of synaptic transmission, and proteins.


Assuntos
Diterpenos , Octodon , Animais , Feminino , Octodon/metabolismo , Encéfalo/metabolismo , Diterpenos/farmacologia , Diterpenos/metabolismo , Reconhecimento Psicológico
9.
Front Aging Neurosci ; 14: 894994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860672

RESUMO

The degu (Octodon degus) is a diurnal long-lived rodent that can spontaneously develop molecular and behavioral changes that mirror those seen in human aging. With age some degu, but not all individuals, develop cognitive decline and brain pathology like that observed in Alzheimer's disease including neuroinflammation, hyperphosphorylated tau and amyloid plaques, together with other co-morbidities associated with aging such as macular degeneration, cataracts, alterations in circadian rhythm, diabetes and atherosclerosis. Here we report the whole-genome sequencing and analysis of the degu genome, which revealed unique features and molecular adaptations consistent with aging and Alzheimer's disease. We identified single nucleotide polymorphisms in genes associated with Alzheimer's disease including a novel apolipoprotein E (Apoe) gene variant that correlated with an increase in amyloid plaques in brain and modified the in silico predicted degu APOE protein structure and functionality. The reported genome of an unconventional long-lived animal model of aging and Alzheimer's disease offers the opportunity for understanding molecular pathways involved in aging and should help advance biomedical research into treatments for Alzheimer's disease.

10.
Front Integr Neurosci ; 16: 799147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295186

RESUMO

Octodon degus are a diurnal long-lived social animal widely used to perform longitudinal studies and complex cognitive tasks to test for physiological conditions with similitude in human behavior. They show a complex social organization feasible to be studied under different conditions and ages. Several aspects in degus physiology demonstrated that these animals are susceptible to environmental conditions, such as stress, fear, feeding quality, and isolation. However, the relevance of these factors in life of this animal depends on sex and age. Despite its significance, there are few studies with the intent to characterize neurological parameters that include these two parameters. To determine the basal neurophysiological status, we analyzed basic electrophysiological parameters generated during basal activity or synaptic plasticity in the brain slices of young and aged female and male degus. We studied the hippocampal circuit of animals kept in social ambient in captivity under controlled conditions. The study of basal synaptic activity in young animals (12-24 months old) was similar between sexes, but female degus showed more efficient synaptic transmission than male degus. We found the opposite in aged animals (60-84 months old), where male degus had a more efficient basal transmission and facilitation index than female degus. Furthermore, female and male degus develop significant but not different long-term synaptic plasticity (LTP). However, aged female degus need to recruit twice as many axons to evoke the same postsynaptic activity as male degus and four times more when compared to young female degus. These data suggest that, unlike male degus, the neural status of aged female degus change, showing less number or functional axons available at advanced ages. Our data represent the first approach to incorporate the effect of sex along with age progression in basal neural status.

11.
Anim Cogn ; 25(1): 33-41, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34156548

RESUMO

Phobia against spiders or snakes is common in humans, and similar phobia-like behaviors have been observed in non-human animals. Visual images of snakes elicit phobia in humans, but sensory modalities that cause snake aversion in non-human animals are not well examined. In this study, we examined visually induced snake aversion in two rodent species. Using a three-compartment experimental chamber, reactions to images of snakes were compared between the diurnal precocious rodent Octodon degus and nocturnal laboratory mice. The snakes whose images were presented do not live in the original habitats of degus or mice. Snake aversion was assessed by presenting snake vs. no-image, snake vs. flower, snake vs. degu, and snake vs. mouse images. The time spent in a compartment with the snake image and with the non-snake images were measured. Degus avoided images of snakes in every tests. In contrast, mice did not display snake aversion. Degus are diurnal animals, i.e., visual information is important for their survival. Since mice are nocturnal, visual information is less important for survival. Such behavioral differences in the two species may explain the difference in visually induced aversion to snakes. A principal component analysis of the stimulus images suggests that elementary cues, such as color, do not explain the differences in the species' aversion to snakes. Finally, snake aversion in degus suggests that aversion is innate, since the animals were born and raised in a laboratory.


Assuntos
Aprendizagem da Esquiva , Octodon , Animais , Ritmo Circadiano , Camundongos , Camundongos Endogâmicos C57BL , Serpentes
12.
J Vet Diagn Invest ; 34(1): 126-129, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34515595

RESUMO

A 5-y-old, male degu (Octodon degus) was presented with a subcutaneous mass in the ventral aspect of the cervical area. The mass was removed surgically. Histologically, the mass was a densely cellular, expansile neoplasm, with compression of thymic tissue to the periphery. The neoplasm consisted of solid sheets of polygonal cells, mixed with fewer small lymphocytes. Rare Hassall bodies were scattered throughout the mass. Polygonal cells were positive for anti-keratin/cytokeratin AE1/AE3 antibody, and small lymphocytes were positive for anti-CD3 antibody. The histopathologic and immunohistochemical findings were consistent with a thymoma. In addition, an autopsy revealed myxosarcoma of the right thoracic wall with metastasis to the lung. To our knowledge, thymoma originating from the cervical component of the thymus has not been documented previously in a rodent species.


Assuntos
Octodon , Doenças dos Roedores , Timoma , Neoplasias do Timo , Animais , Masculino , Roedores , Timoma/cirurgia , Timoma/veterinária , Neoplasias do Timo/cirurgia , Neoplasias do Timo/veterinária
13.
Front Vet Sci ; 8: 759093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957278

RESUMO

Adverse effects of high dietary phosphorus on bone health have been observed in both animal and human studies. The aim of the investigation was to examine chronic effects of high phosphorus diet on the apical mandibular cortical thickness and volume in a hystricomorph rodent (Octodon degus) using microcomputed tomography. Male degus were randomly divided into two groups fed by different mineral contents from the age of 12 weeks till the age of 17 months. The micro-CT scanning and wall thickness analysis were applied on the region of the mandible exactly under the apices of the 4th premolar tooth, first molar tooth, and second molar tooth in two animals from each group. General overview and mapping of the ventral mandibular bone thickness revealed pronounced bony mandibular protrusions in all the animals fed a high-phosphorus diet with obvious bone thinning apically to the 4th premolar and first and second molar tooth apices. Mandibular bone volume and thickness located apically to the premolar and molars were statistically significantly smaller/thinner in the group fed by a high phosphorus diet. The thinnest bone measured 0.004 mm, where the mandibular 4th premolar tooth almost perforated the mandibular cortex. Similar studies of metabolic bone disease and its influence on alveolar bone were also published in rats and mice. The influence of different environmental, infectious, or metabolic factors on the growing tooth, alveolar bone formation, and bone pathologies must be done experimentally on growing animals. In contrast, degus have continuously growing dentition, and the effect of any of the above listed factors can be studied in this animal model at any age and for longer time periods.

14.
Front Integr Neurosci ; 15: 733007, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707484

RESUMO

Alzheimer's disease is a progressive neurodegenerative disorder and the most common cause of dementia. Although transgenic Alzheimer's disease (AD) animal models have greatly contributed to our understanding of the disease, therapies tested in these animals have resulted in a high rate of failure in preclinical trials for AD. A promising model is Octodon degus (degu), a Chilean rodent that spontaneously develops AD-like neuropathology. Previous studies have reported that, during aging, degus exhibit a progressive decline in cognitive function, reduced neuroinflammation, and concomitant increases in the number and size of amyloid ß (Aß) plaques in several brain regions. Importantly, in humans and several AD models, a correlation has been shown between brain dysfunction and neuronal glucose utilization impairment, a critical aspect considering the high-energy demand of the brain. However, whether degus develop alterations in glucose metabolism remains unknown. In the present work, we measured several markers of glucose metabolism, namely, glucose uptake, ATP production, and glycolysis and pentose phosphate pathway (PPP) flux, in hippocampal slices from degus of different ages. We found a significant decrease in hippocampal glucose metabolism in aged degus, caused mainly by a drop in glucose uptake, which in turn, reduced ATP synthesis. Moreover, we observed a negative correlation between age and PPP flux. Together, our data further support the use of degus as a model for studying the neuropathology involved in sporadic AD-like pathology and as a potentially valuable tool in the search for effective treatments against the disease.

15.
Front Integr Neurosci ; 15: 719076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526882

RESUMO

Aging is a progressive functional decline characterized by a gradual deterioration in physiological function and behavior. The most important age-related change in cognitive function is decline in cognitive performance (i.e., the processing or transformation of information to make decisions that includes speed of processing, working memory, and learning). The purpose of this study is to outline the changes in age-related cognitive performance (i.e., short-term recognition memory and long-term learning and memory) in long-lived Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects makes it a unique animal model for exploring the mechanisms underlying the behavioral and cognitive deficits related to natural aging. In this study, we examined young adult female degus (12- and 24-months-old) and aged female degus (38-, 56-, and 75-months-old) that were exposed to a battery of cognitive-behavioral tests. Multivariate analyses of data from the Social Interaction test or Novel Object/Local Recognition (to measure short-term recognition memory), and the Barnes maze test (to measure long-term learning and memory) revealed a consistent pattern. Young animals formed a separate group of aged degus for both short- and long-term memories. The association between the first component of the principal component analysis (PCA) from short-term memory with the first component of the PCA from long-term memory showed a significant negative correlation. This suggests age-dependent differences in both memories, with the aged degus having higher values of long-term memory ability but poor short-term recognition memory, whereas in the young degus an opposite pattern was found. Approximately 5% of the young and 80% of the aged degus showed an impaired short-term recognition memory; whereas for long-term memory about 32% of the young degus and 57% of the aged degus showed decreased performance on the Barnes maze test. Throughout this study, we outlined age-dependent cognitive performance decline during natural aging in degus. Moreover, we also demonstrated that the use of a multivariate approach let us explore and visualize complex behavioral variables, and identified specific behavioral patterns that allowed us to make powerful conclusions that will facilitate further the study on the biology of aging. In addition, this study could help predict the onset of the aging process based on behavioral performance.

16.
Ecol Evol ; 11(17): 11730-11738, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522336

RESUMO

Different conceptions of disturbance differ in the degree to which they appeal to mechanisms that are general and equivalent, or species-, functional group-, or interaction-specific. Some concepts of disturbance, for example, predict that soil disturbances and herbivory have identical impacts on species richness via identical mechanisms (reduction in biomass and in competition). An alternative hypothesis is that the specific traits of disturbance agents (small mammals) and plants differentially affect the richness or abundance of different plant groups. We tested these hypotheses on a degu (Octodon degus) colony in central Chile. We ask whether native and non-native forbs respond differently to degu bioturbation on runways versus herbivory on grazing lawns. We ask whether this can explain the increase in non-native plants on degu colonies. We found that biopedturbation did not explain the locations of non-native plants. We did not find direct evidence of grazing increasing non-native herbs either, but a grazing effect appears to be mediated by grass, which is the dominant cover. Further, we provide supplementary evidence to support our interpretation that a key mechanism of non-native spread is the formation of dry soil conditions on grazing lawns. Thus, ecosystem engineering (alteration of soil qualities) may be an outcome of disturbances, in which each interacts with specific plant traits, to create the observed pattern of non-native spread in the colony. Based on these results, we propose to extend Jentsch and White (Ecology, 100, 2019, e02734) concept of combined pulse/ disturbance events to the long-term process duality of ecosystem engineering/ disturbance.

17.
Front Integr Neurosci ; 15: 684988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276317

RESUMO

Octodon degus is primarily a diurnal species, however, in laboratory conditions, it can switch from diurnal to nocturnal in response to wheel running availability. It has been proposed that this activity inversion obeys thermoregulatory constraints induced by vigorous physical exercise. Thus, its activity shifts to the night as the ambient temperature is lower.Here, we investigate the relationship between thermoregulation and the activity phase-inversion in response to wheel-running in this species. We measured behavioral activity and body temperature rhythms in diurnal naïve animals under 12 h light: 12 h dark cycles at four different ambient temperatures (spanning from ~26°C to 32°C), and following access to running wheels while maintained under high ambient temperature.Our results show that naïve degus do not shift their diurnal activity and body temperature rhythms to a nocturnal phase when subjected to sequential increases in ambient temperature. However, when they were provided with wheels under constant high-temperature conditions, all animals inverted their diurnal phase preference becoming nocturnal. Both, negative masking by light and entrainment to the dark phase appeared involved in the nocturnalism of these animals. Analysis of the thermoregulatory response to wheel running revealed some differences between masked and entrained nocturnal chronotypes.These data highlight the importance of the coupling between wheel running availability and ambient temperature in the nocturnalism of the degus. The results support the view that an innate "protective" pre-program mechanism (associating darkness and lower ambient temperature) may change the timing of behavioral activity in this species to reduce the potential risk of hyperthermia.

18.
Front Neuroanat ; 15: 656882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994960

RESUMO

It has been demonstrated that in adulthood rodents show newly born neurons in the subgranular layer (SGL) of the dentate gyrus (DG), and in the subventricular zone (SVZ). The neurons generated in the SVZ migrate through the rostral migratory stream (RMS) to the olfactory bulb. One of the markers of newly generated neurons is doublecortin (DCX). The degu similarly shows significant numbers of DCX-labeled neurons in the SGL, SVZ, and RMS. Further, most of the nuclei of these DCX-expressing neurons are also labeled by proliferating nuclear antigen (PCNA) and Ki67. Finally, whereas in rats and mice DCX-labeled neurons are predominantly present in the SGL and SVZ, with only a few DCX neurons present in piriform cortex, the degu also shows significant numbers of DCX expressing neurons in areas outside of SVZ, DG, and PC. Many areas of neocortex in degu demonstrate DCX-labeled neurons in layer II, and most of these neurons are found in the limbic cortices. The DCX-labeled cells do not stain with NeuN, indicating they are immature neurons.

19.
Biochem Biophys Res Commun ; 551: 54-62, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33721831

RESUMO

Octodon degus is said to be one of the most human-like rodents because of its improved cognitive function. Focusing on its high sociality, we cloned and characterized some sociality-related genes of degus, in order to establish degus as a highly socialized animal model in molecular biology. We cloned degus Neurexin and Neuroligin as sociality-related genes, which are genetically related to autism spectrum disorder in human. According to our results, amino acid sequences of Neurexin and Neuroligin expressed in degus brain, are highly conserved to that of human sequences. Most notably, degus Neuroligin4 is highly similar to human Neuroligin4X, which is one of the most important autism-related genes, whereas mouse Neuroligin4 is known to be poorly similar to human Neuroligin4X. Furthermore, our work also indicated that testosterone directly binds to degus Neurexin and intercepts intercellular Neurexin-Neuroligin binding. Moreover, it is of high interest that testosterone is another key molecule of the higher incidence of autism in male. These results indicated that degus has the potential for animal model of sociality, and furthermore may promote understanding toward the pathogenic mechanism of autism.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Octodon/metabolismo , Receptores de Superfície Celular/metabolismo , Testosterona/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Proteínas de Ligação ao Cálcio/química , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Hipocampo/metabolismo , Humanos , Masculino , Moléculas de Adesão de Célula Nervosa/química , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Receptores de Superfície Celular/química , Globulina de Ligação a Hormônio Sexual/química , Testosterona/farmacologia
20.
Neurobiol Stress ; 14: 100289, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33426200

RESUMO

Loneliness affects group-living mammals triggering a cascade of stress-dependent physiological disorders. Indeed, social isolation stress is a major risk factor for several neuropsychiatric disorders including anxiety and depression. Furthermore, social isolation has a negative impact on health and fitness. However, the neurobiological consequences of long-term chronic social isolation stress (LTCSIS) manifested during the adulthood of affected individuals are not fully understood. Our study assessed the impact of LTCSIS and social buffering (re-socialization) on the behavioural performance and social-affective brain-related proteins in diurnal, social, and long-lived Octodon degus (degus). Thereby, anxiety-like and social behaviour, and social recognition memory were assessed in male and female animals subjected to a variety of stress-inducing treatments applied from post-natal and post-weaning until their adulthood. Additionally, we evaluated the relationship among LTCSIS, Oxytocin levels (OXT), and OXT-Ca2+-signalling proteins in the hypothalamus, the hippocampus, and the prefrontal cortex. Our findings suggest that LTCSIS induces anxiety like-behaviour and impairs social novelty preference whereas sociability is unaffected. On the other hand, re-socialization can revert both isolation-induced anxiety and social memory impairment. However, OXT and its signalling remained reduced in the abovementioned brain areas, suggesting that the observed changes in OXT-Ca2+ pathway proteins were permanent in male and female degus. Based on these findings, we conclude degus experience social stress differently, suggesting the existence of sex-related mechanisms to cope with specific adaptive challenges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...